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Abstract—Compressive Sensing (CS) or Compressive Sampling 
is one of the recent breakthroughs in signal processing technology. 
It is a signal sensing paradigm that samples signals at a sub-
Nyquist rate by capitalizing on signal sparsity and compressing the 
acquired signal at the time of sensing. The reconstruction of the 
compressive sampled signal gives back the original signal saving 
significant storage capacity due to the sub- Nyquist sampling. CS 
comprises of two high-level, salient steps – Data Acquisition and 
Data Reconstruction. The objective of this paper is to illustrate the 
implementation of the CS concept through models for data 
acquisition and reconstruction using MATLAB and SIMULINK, 
and also illustrate a comparison of some of the ways in which CS 
has been achieved for different audio signals. 

Index Terms- Compressive Sensing, Signal Processing, Sparsity, 
Acquisition, Reconstruction. 

I. INTRODUCTION 

The concept of compressive sensing was introduced in 2004 

when Emmanuel Candes, David Donoho, Justin Romberg and 

Terence Tao proved that a signal can be reconstructed from 

much fewer samples than the conventional Nyquist sampling 

theorem [1]. Advancements in applied mathematics, computer 

science and signal processing have paved a path for this new 

sensing modality which is essentially a way of reconstructing a 

high dimensional signal with massively down-sampled 

measurements, making it one of the most significant and 

blooming areas of research in signal processing technology. It 

has become a recent breakthrough that overrides the 

requirements of the sampling theorem, unlocking a new 

perspective towards sampling data, which successfully saves 

significant storage space and enables efficient data sampling. 

Compressive sensing and the process of reconstruction is done 

by first acquiring and sensing the data through a certain 

methodology involving down-sampling and then applying 

suitable reconstruction techniques to get back the original data  

 

through sparse signal recovery .Standard compression still 

relies on having access to full high-dimensional measurements. 

The recent advancement of compressive sensing however 

provides a way of approaching sampling: 

instead of collecting high-dimensional data just to compress 

and discard most of the information, it is instead possible to 

collect surprisingly few compressed or random measurements 

and then infer what the sparse representation is in the 

transformed basis [2]. 
II. METHODOLOGY 

Compressive sensing employs some of the salient techniques 

in applied mathematics involving linear algebra essentially 

solving an underdetermined linear equation. The methodology 

in performing the same comprises of acquiring certain very few 

samples of the data followed by reconstructing the original 

signal utilizing appropriate reconstruction algorithms. 

A. Acquisition 

To acquire and sense certain data points in the signal, firstly 

,the conversion the audio signal into its vectored representation 

of data points by sampling at a certain frequency is done ,then 

a suitable transformation in the appropriate basis is performed 

followed by employing a sensing matrix that senses or certain 

data points of the input by giving us the compressed data. 

In order to transform the input vector ’y’ in the appropriate 

domain we use a universal transform basis represented by 

matrix ’ψ’ in which the signal is compressible. 

 

y = ψx 

 



This results in a sparse representation of the input signal in 

the transformed domain, x as depicted in fig 1. 

 

By using a sensing matrix certain data points of the audio 

signal are sensed. Here we incorporate a random orthonormal 

sensing matrix ’φ’ consisting of orthonormal vectors, that is 

multiplied with the input signal vector to yield the vector of 

compressive measurements ’b’. (fig 2) 

 

                                           φy = b 

 

 

 

Fig. 1. transforming the input to yield its sparse form 

Fig. 2. sensing certain few points using the sensing matrix 

B. Reconstruction 

Mathematically, compressed sensing exploits the property of 

sparsity of a signal to achieve complete signal reconstruction 

from surprisingly few i.e downsampled measurements. 

Therefore, after sensing the elements of input ’y’ and obtaining 

the compressive measurements , the next step is to succesfully 

reconstruct the signal using these measurements in ’b’. 
As pictorically represented in the above figure the matrix φ 

times ψ is rewrittten as a matrix ’A’ resulting in the equation 

 

Ax = b 

The above equation is an underdetermined linear equation as 

described earlier where the objective of reconstruction is to 

solve for x thereby recovering the sparse signal. 

In order to successfully perform compressive sensing on 

audio signals methodically as illustrated above we incorporate 

MATLAB to code some of these essential mathematical 

equations that entail the aquisition of data samples followed by 

recontruction , by coding the appropriate reconstruction 

algorithms . A model for the same is then designed in 

SIMULINK. 

. 

 

 

• Input audio signal of suitable file format 

• sampling the signal with a suitable sampling rate 

• formulation of Random matrix 

                          Fig. 3. The Data Acquisition model 

Fig 3 depicts the Acquisition model designed,  comprising of 

the input signal block and the sensing matrix block subject to 

matrix multiplication (as illustrated in fig 2), in order to obtain 

the vector of compressive measurements. 

 

 

                         III. MODEL DESIGN 

A. Data Acquisition Model 

To begin with, we first need to acquire our data samples from 

the signal by obtaining the down-sampled set of data points. 

For this, the data acquisition model is designed. This model 

essentially deals with the acquisition of samples at a sub-

Nyquist rate in order to successfully reconstruct the signal. It 

involves the formulation of a matrix, that represents the 

original signal vector as its data points, multiplied by a matrix 

called the sensing matrix producing very few compressive 

measurements. We do the following in data acquisition - 



B .Reconstruction Model   

 

The reconstruction model follows the data acquisition where in 

the obtained down-sampled measurements are used  

to reconstruct the original signal by employing appropriate 

reconstruction algorithms governed by the reconstruction 

matrix. 

Some of the parameters considered while designing this are 

as follows - 

• Using suitable reconstruction methodologies like Basis 

pursuit and to successfully perform sparse signal recovery 

of the given input audio signal. 

• computing the reconstruction matrix based on the above 

considerations 

• Performing suitable inverse transformation on the 

recovered sparse signal to reconstruct the input signal 

 

                               Fig 4. Reconstruction model 

 

C. Reconstruction Algorithm  

 

There exists many reconstruction algorithms for compressive 

sensing, employing advanced mathematical techniques to 

successfully reconstruct the data from the sub-Nyquist samples. 

One of these is the well known basis pursuit algorithm 

focussing on minimizing the norm subject to the constraint in 

an underdetermined linear equation. In compressive sensing, 

we want to search for the sparsest vector consistent with the 

measured data. The problem can be stated as L0 minimization. 

                       minimize ||x||0 subject to Ax = b 

Solving the L0 minimization problem can be shown to be NP   

hard (Non deterministic polynomial time hardness). However, 

computationally efficient algorithms are well-developed to 

solve a relaxed version of the problem. One of these algorithms 

is basis pursuit, which can be stated as follows. 

 

                      minimize ||x||1 subject to Ax = b 

where the problem is reduced to a convex l1-minimization 

here, ||.||0 denotes the 0 pseudo-norm, given by the number of 

nonzero entries; this is also referred to as the cardinality of x 

and ||.||1 denotes the L1 norm. 

CVX - A Convex programming approach : 

Convex optimization deals with mathematical optimization 

techniques tackling mathematically complex problems where 

all the constraints are convex functions i.e the constraints over 

convex sets.CVX is a mathematical modelling language 

tackling convex problems. It allows constraints to be 

implemented through the standard Matlab syntax and 

essentially supports disciplined convex programming. 

For reconstructing the audio, basis pursuit is employed in two 

different ways - 1) programming it as an l1 minimization 

function (Without the use of CVX) and 2) programming it as a 

convex optimization problem using the CVX software. 

The results thereby obtained for audio signals of different 

durations observed, comparing transform bases such as the 

sine, cosine and fourier transforms subjected to the audio. 

 

IV. RESULTS 

For various duration of input audio signals and transform 

bases ( sine , cosine and fourier) the performance of the CS 

algorithm is tested as seen in the figures below. The below 

figure shows the input audio signal considered  

                                 

 

Fig. 6. CVX 



The input audio is transormed in a cosine domain and 

compressed using the orthonormal sensig matrix after which it 

is reconstructed with and without using CVX represented in fig 

6 and fig 7. 

 
 

 
                                                   Fig 7. Without CVX 

The signal to noise ratio for various audio signals considered is 

tabulated for both the approaches of CS is performed.  

                               V. CONCLUSION 

 

The implementation of Compressive sensing on audio 

signals using two different approaches was done. The algorithm 

for compressive sensing and sparse signal recovery was tested 

on different audio samples and the signal to noise ratio is 

compared. 
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 Without CVX  

 0.2 

secs 

3 secs 5 secs 

DCT 0.5666 0.0004 2.0202 

DST 0.4767 0.0484 1.4414 

FFT 36.663 0.0257 37.7301 

 Using CVX  

 0.2 secs 3 secs 5 secs 

DCT 0.6345 0.05 1.5714 

DST 60.5945 60.0371 61.8453 

FFT 62.0597 66.0226 61.5987 


